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Modeling and Analysis of the DSS-14
Antenna Control System

W. Gawronski and R. Bartos
Communications Ground Systems Section

An improvement of pointing precision of the DSS-14 antenna is planned for the
near future. In order to analyze the improvement limits and to design new con-
trollers, a precise model of the antenna and the servo is developed, including a finite
element model of the antenna structure and detailed models of the hydraulic drives
and electronic parts. The DSS-14 antenna control system has two modes of opera-
tion: computer mode and precision mode. The principal goal of this investigation
is to develop the model of the computer mode and to evaluate its performance.
The DSS-14 antenna computer model consists of the antenna structure and drives
in azimuth and elevation. For this model, the position servo loop is derived, and
simulations of the closed-loop antenna dynamics are presented. The model is sig-
nificantly different from that for the 34-m beam-waveguide antennas.

I. Introduction

The DSS-14 antenna control system model consists of the antenna structure, antenna drives in azimuth
and elevation, and the position servo loop. Each drive, in turn, consists of gearboxes, hydraulic servo
(active and passive valves, hydraulic lines, and hydraulic motors), and electronics boards (amplifiers
and filters). The DSS-14 antenna control system model was developed by R. E. Hill [1,2]. In the present
development, we obtain a more precise model that allows for accurate simulations of the antenna pointing
errors and allows simulation of the intermediate variables, such as torques, currents, wheel rates, truss
stresses, etc. We incorporate the finite element structural model with free rotation in azimuth and
elevation, in a manner similar to the 34-m antenna models [3–5], that involves cross-coupling effects
between azimuth and elevation, wind pressure on the dish, and pointing error model. The hydraulic part
involves a recent development in modeling of the hydraulic components by R. Bartos [6–8].

The rate loop model consists of the elevation and azimuth drives and the antenna structure. Each drive
consists of three major components: the electronics boards, hydraulic system, and gearbox. A model of
each component is derived separately, then put together, forming the drive and rate loop models. Finally,
the position loop is closed to obtain the position loop model.

II. Drive Model

A block diagram of the drive model is shown in Fig. 1, where Nt is the ratio between motor rate
and tachometer (pinion) rate; r, rad/s, is the rate input to the drive; i, A, is the hydraulic active valve

113



           

ELECTRONIC
BOARD

HYDRAULIC
SYSTEM

GEAR
BOX

r
i TTo

θm
•θm

•

θm
•

θtach
•

θp
•

•
1

Nt

Fig. 1.  Block diagram of the antenna drive.

solenoid current; To and T , N·m or lb in., are the gearbox and on-axis torques, respectively; and θ̇tach and
θ̇m, rad/s, are the pinion and motor rates, respectively. The state–space representation of the electronic
board, hydraulic system, and gearbox are derived in the following sections.

A. Electronic Board

A schematic diagram for the electronic board is shown in Fig. 2. The inputs are the rate command
r, rad/s, and the tachometer rate θ̇tach, rad/s. The output is the solenoid valve current i. The scaling
factors, kr and kt, convert the inputs into the command voltage, vr, and tachometer voltage, vt. The
subsystem, Gt, is the tachometer circuit: it transforms the tachometer voltage, vt, into the voltage, vto.
The subsystems with the transfer functions Gr1 and Gr2 are the rate amplifier circuits: they transform
the command voltage, vr, and the tachometer voltage, vto, into the error voltage, vs. The subsystem with
the transfer function, Gs, is the valve driver amplifier circuit, with the error voltage, vs, as the input and
the valve current, i, as the output.

r

kt Gr2 Gs
iVsGto

Gr1kr
Vr

+–
VtsVto

Vrs

Vtθtach
•

Fig. 2.  Block diagram of the electronic board.

The following transfer functions of each of the four components are derived in the Appendix. The
transfer function Gto for azimuth is

Gto = 0.151 (1)

and, for elevation, is

Gto = 0.127 (2)

The transfer functions Gr1 (from vr to vs) and Gr2 (from vto to vs) are
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Gr1 = 6.20 Go

Gr2 = − 4.65 Go

 (3)

where

Go =
1 + 0.400s
1 + 4.205s

(4)

is the transfer function of a lag compensator. The transfer function Gs is

Gs = 4.42× 10−5 (5)

The scaling factors, kr and kt, are kr = 1212.6 V/rad/s and kt = 2.5 V/rad/s. Thus, the command
transfer function from the rate command r to the solenoid current is is

Gr = krGr1Gs = 0.3323 Go (6)

where Go is defined in Eq. (4). The tachometer transfer function from the tachometer rate θ̇tach to the
solenoid current is is

Gt = ktGtoGr2Gs (7)

Gt =
{
−0.7750× 10−4Go for azimuth
−0.6525× 10−4Go for elevation

(8)

In order to check the correctness of the derivation, note that the ratioGr/Gt should be equal to No, where
No is the tachometer-to-axis ratio (No = 4287.5 for azimuth and No = 5083.6 for elevation). Indeed,
from Eqs. (6) and (7), one obtains

Gr
Gt

=
{
−4287.7 = No for azimuth
−5092.7 ∼= No for elevation

(9)

Finally, the state–space representations of the transfer functions Gr and Gt (for azimuth and elevation)
are easily obtained with the standard Matlab command in the form

ẋb = Abxb +Bb1r +Bb2θ̇tach

i = Cbx+Db1r +Db2θ̇tach

 (10)

The plot of the transfer function in azimuth (magnitude and phase) from r to i is shown in Fig. 3. The
transfer function for elevation is identical. The plots of the transfer functions in azimuth and elevation
from θ̇tach to i are shown in Fig. 4. The magnitudes drop in the frequency range from 0.01 to 0.1 Hz due
to implementation of the filter Go.
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Fig. 3.  Magnitude of the electronic board transfer function from the rate input to the
board current.
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B. Hydraulic System

The hydraulic servo system model was presented by R. E. Hill in [1] and [2]. Here we take a different
approach, based on the recent investigations of hydraulic components by R. Bartos (see [6–8]). A block
diagram of the DSS-14 hydraulic system is shown in Fig. 5. It consists of the hydraulic motor, shorting
valve, hydraulic lines A and B, passive servo valves, and active servo valves. It has two inputs, servo
valve current i and motor rate θ̇m, and one output, motor torque To. The equations for each component
are derived separately based on the work of Bartos [6–8]. Basically, these models are nonlinear ones;
however, we linearize them in order to model the antenna linear regime of operation.

1. Active Servo Valve. This valve model has the input, i, A, and two outputs, qav—the flow rate
out of port a, cm3/s, or in.3/s, and qbv, the flow rate out of port b, cm3/s, or in.3/s. From [6], one obtains

q̇·av + 2ζoωoq̇av + ω2
oqav = ω2

okai (11a)

qbv = −qav (11b)

where ζo = 0.8 is the damping ratio, ωo = 345.6 rad/s is the valve natural frequency, and ka = 59, 200
− 97, 300 cm3/s/A (23,300–38300 in.3/s/A) is the valve gain. The lower value is the Bartos estimate,
while the upper value is the Hill estimate [2]. The values of the parameters are listed in Table 1.
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Table 1. Parameters of the active servo valve (line A and line B).

ωo, ka, ka,
Drive ζo

rad/s cm3/s/A in.3/s/A

Azimuth 0.6 to 0.8 345.56 59,200 to 97,300 23,300 to 38,300

Elevation 0.6 to 0.8 345.56 59,200 to 97,300 23,300 to 38,300

Introducing the new variable qv = qav − qbv, one obtains from Eq. (11)

q̇·v + 2ζoωoq̇v + ω2
oqv = 2ω2

okai (12)

The differential variable qv and the other differential variables introduced allow one to further simplify
the analysis without loss of accuracy and to get rid of the “parasitic” variables, such as tank pressure,
supply pressure, and case pressure.

2. Shorting Valve. The pressures pa and pb, kPa (lb/in.2), are the inputs to the shorting valve, and
the flows qas and qbs, cm3/s (in.3/s), are its output (see Fig. 5). The linearized relationship between the
inputs and outputs is as follows:

qas = ks(pa − pb)

qbs = − qas

 (13)

where ks is the valve gain, ks = 0.0007−0.007 cm3/s/kPa (0.0003–0.003 in.3/s/psi), both in azimuth and
elevation.
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Introducing new differential variables p = pa − pb and qs = qas − qbs, one obtains Eq. (13) in the form

qs = 2ksp (14)

3. Passive Servo Valve. This valve has four inputs: pressures pa and pb, supply pressure ps, and
tank pressure pt. The last two are supplementary constant inputs that can be removed from the analysis.
The valve has two outputs: flows qap and qbp. Its linearized input–output relationship is as follows:

qap = kp1(pa − ps) + kp2(pa − pt) (15a)

qbp = kp1(pb − ps) + kp2(pb − pt) (15b)

where the gains are kp1 = 0.0055 cm3/kPa (0.00233 in.3/psi) and kp2 = kp1, the supply pressure is
17,240 kPa (2500 psi), and the tank pressure is 345 kPa (50 psi). These values are identical for azimuth
and elevation.

Introducing qp = qap− qbp, and recalling that p = pa− pb, one obtains Eqs. (15a) and (15b) as follows:

qp = (kp1 + kp2)p = 2kpp (16)

where, for simplicity of notation, we denote kp = kp1 = kp2.

4. Hydraulic Motor. The motor is described in [8]. From Fig. 5, it follows that the motor has four
inputs and four outputs. The inputs are pressures pa and pb, case pressure pc, and motor rate θ̇m, rad/s.
The outputs are flows qa and qb, leakage to the case qc, and motor torque To, N·m (or lb in.). Following
[8], one obtains the flow qa from Eq. (59) of [8]:

qa = qa1 + qa2 + qa3 (17)

But, from Eq. (40) of [8],

qa1 = Dθ̇m (18)

where D = 6.3 cm3/rad (0.3836 in.3/rad) is the motor “displacement.” From Eq. (52) of [8], one obtains

qa2 =
ka2
µ

(pa − pc) (19)

where ka2 = from 6.35 × 10−5 to 18.3 × 10−5 cm3 (from 2.5 × 10−5 to 7.2 × 10−5 in.3) is the leakage
constant (assumed to be 10−4 cm3, or 4 × 10−5 in.3); µ = from 2.8 × 10−4 to 2.8 × 10−3 kPa s (from
4× 10−5 to 4× 10−6 lb s/in.2) is the absolute fluid viscosity (assumed to be 10−4 cm3, or 4× 10−5 in.3);
and pc = 221 kPa (32 psi). From Eq. (58) of [8], one obtains the leakage from port A to port B, qa3:

qa3 =
ka3
µ

(pa − pb) (20)
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where ka3 is the constant of proportionality determined through experiments. It is assumed to be equal
to ka2, ka3 = ka2.

Combining Eqs. (17) through (20), one obtains

qa = Dθ̇m +
ka2 + ka3

µ
pa −

ka3
µ
pb −

ka2
µ
pc (21)

From [8], Eq. (60), one obtains the flow rate qb:

qb = qb1 + qb2 − qa3 (22)

It follows from [8], Eq. (41), that

qb1 = −qa1 = −Dθ̇m (23)

and from [8], Eq. (53), that

qb2 =
kb2
µ

(pb − pc) (24)

Combining Eqs. (22), (23), (24), and (20), one obtains

qb = −Dθ̇ − ka3
µ
pa +

ka3 + kb2
µ

pb −
kb2
µ
pc (25)

The motor torque To is obtained from Eq. (28) of [8] by neglecting Coulomb friction and inertia torques
(the latter are included in the gearbox model):

To = Tp + Tf (26)

where Tp is the torque generated by the motor and Tf is the viscous friction torque. The linearized
Eq. (10) of [8] gives the torque generated by the motor:

Tp = D(pa − pb) (27)

and from Eq. (24) of [8], one obtains the viscous friction torque:

Tf = −kvDµθ̇ (28)

where kv = 0.0438 is a dimensionless viscous friction coefficient. Combining Eqs. (26) through (28), one
obtains

To = Dpa −Dpb − kvDµθ̇ (29)
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Define q = qa − qb; then from Eqs. (21) and (25), one obtains

q = 2Dθ̇m +
3ka2
µ

p

To = Dp− kvDµθ̇m

 (30)

The motor parameters are given in Table 2.

Table 2. Parameters of the hydraulic motor (line A and line B).

D, D, pc, pc,
Drive µ, kPa s µ, lb s/in.2 kv ka2, cm3 ka2, in.3

cm3/rad in.3/rad kPa psi

Azimuth 2.8× 10−4 0.4× 10−6 25.2 1.52 0.0438 4.1× 10−4 2.5× 10−5 220 32
to to to to

28× 10−4 4× 10−6 11.8× 10−4 7.2× 10−5

Elevation 2.8× 10−4 0.4× 10−6 25.2 1.52 0.0438 4.1× 10−4 2.5× 10−5 220 32
to to to to

28× 10−4 4× 10−6 11.8× 10−4 7.2× 10−5

5. Hydraulic Line. There are two lines: A and B. A model for line A is developed, and the model
for line B is similar (index “a” should be replaced with “b”). Line A has four inputs, flows qa, qav, qapv,
and qasv, and a single output, pressure pa (refer to Fig. 5). From [7], one obtains the line-A model as an
integrator, with the negative feedback signs as in Fig. 5:

ṗa = kla(−qa + qav − qap − qas) (31a)

Similarly, the line-B model is obtained:

ṗb = klb(−qb + qbv − qbp − qbs) (31b)

As before, defining p = pa − pb, one obtains

ṗ = kl(−q + qv − qp − qs) (32)

In these equations, the gains are

kl =
β

vo
(33)

where β is the effective bulk modulus (capacitance of the line), β = 1.29× 106 kPa (1.87× 105 psi), and
vo is the total volume, vo = 27, 200 cm3 (1660 in.3), so that kl = 47.3 kPa/cm3 (113 psi/in.3). The values
are collected in Table 3.
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Table 3. Parameters of line A and line B.

Drive β, kPa β, psi vo, cm3 vo, in.3

Line A

Azimuth 1.29× 106 1.87× 105 27,200 1653.6
Elevation 1.29× 106 1.87× 105 24,500 1498.1

Line B

Azimuth 1.29× 106 1.87× 105 27,700 1690.4
Elevation 1.29× 106 1.87× 105 24,600 1499.9

6. Hydraulic System Model. The model of the hydraulic system is derived by combining its
elements (active servo valve, shorting valve, passive valve, hydraulic lines, and hydraulic motors). By
introducing the new differential variables, the block diagram in Fig. 5 is simplified to the one in Fig. 6.
A detailed block diagram of the hydraulic system is shown in Fig. 7. Combining Eqs. (12), (14), (16),
(32), and (30) (or, alternatively, using the block diagram in Fig. 7), and defining the new state vector
xh = [x1, x2, x3]T , with three states, x1 = q̇v, x2 = qv, and x3 = p, and defining the input current, i,
motor rate θ̇m, and the single-output motor torque, To, one obtains

ẋh = Ahxh +Bhoθ̇m +Bhii

To = Chxh +Dhoθ̇m +Dhi

 (34a)

where

HYDRAULIC
LINE

HYDRAULIC
MOTOR

ACTIVE
SERVO
VALVE

PASSIVE
VALVE

SHORTING
VALVE

•

•
– –

–
+i p

p

pqs

qp

q

θm
•

Fig. 6.  Simplified block diagram of the hydraulic drive.
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
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 0
0
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

Ch =
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0
D


Dhi = 0

Dho =− kvDµ



(34b)

The plots of the magnitudes of the transfer function in azimuth and elevation from i to To are shown
in Fig. 8. The plots of the magnitudes of the transfer functions in azimuth and elevation from θ̇m to To
are shown in Fig. 9.

C. Gearbox Model

The gearbox model was described in detail in [5], and its block diagram is given in Fig. 10. In this
diagram, To is the motor torque, θ̇p is the antenna angular rate, ωm is the motor rate, T is the gearbox
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torque, Jm is the motor inertia, kg is the gearbox (output) stiffness, and N is the gearbox ratio. This
model has two inputs, the motor torque, To, and the wheel (pinion) angular rate, θ̇p, and a single output,
the gearbox torque, T .

The equations for this system are as follows:
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Jmω̇m = To −
T

N
(35a)

T = kg

(
θm
N
− θp

)
(35b)

Denoting the state variables x1 = ωm and x2 = T , one obtains

ẋ1 =
−x2

NJm
+
To
Jm

(36a)

ẋ2 =
kgx1

N
− kg θ̇p (36b)

Defining the gearbox state as xg = [x1 x2 ]T , input To and θ̇p, and output T and ωm, one obtains the
gearbox state–space representation (Ag, Bg, Cg):

ẋg = Agxg +Bg1To +Bg2θ̇p

T = Cg1xg

θ̇m =Cg2xg


(37a)

where

Ag =

 0
−1
NJm

kg
N

0



Bg1 =

[ 1
Jm
0

]

Bg2 =
[

0
−kg

]

Cg1 = [ 0 1 ]

Cg2 = [ 1 0 ]



(37b)

D. Drive Model

The drive model is obtained by combining the state–space representation of the electronic board,
Eq. (10); the hydraulic system, Eq. (34); and the gearbox, Eq. (37), according to the block diagram in
Fig. 1. Defining the drive state vector xd = [xTb , x

T
h , x

T
g ]T , we obtain the state equations
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ẋd = Adxd +Bdrr +Bdtθ̇p

T = Cdxd

 (38a)

where

Ad =


Ab 0

Bb2Cg2
Nt

BhiCb Ah BhoCg2 +
BhiDbeCg2

Nt

Bg1DhiCb Bg1Ch Ag +Bg1DhoCg2 +
Bg1DhiDb2Cg2

Nt



Bdr =

 Bb1
BhiDb1

Bg1DhiDb1



Bdt =

 0
0
Bg2


Cd = [ 0 0 Cg1 ]



(38b)

The plots of the magnitudes of the transfer function in azimuth and elevation from r to T are shown
in Fig. 11. The plots of the transfer functions in azimuth and elevation from θ̇p to T are shown in Fig. 12.

III. Structure Model

The structural model is derived from the finite element model of the antenna structure with free
rotations with respect to the elevation and azimuth axes. The finite element model consists of the
diagonal modal mass Mm(p× p), diagonal natural frequencies matrix Ω(p× p), diagonal modal damping
matrix Z(p× p), and modal matrix Φ(m× p), p ≤ m, which consists of p eigenvectors φi (mode shapes),
i = 1, · · · , p:

Φ = [φ1, φ2, · · · , φp] (39)

Let the finite element model have m degrees of freedom, with s inputs u(t), where u is s × 1 vector,
and with r outputs y(t), where y is r × 1 vector. If the input matrix is Bo(m × s), the output matrix
for displacement is Coq(r × m), and the output matrix for rates is Cov(r × m), then the input–output
relationship is given by the following second-order differential equation:

·q̇m + 2ZΩq̇m + Ω2qm =M−1
m ΦTBou

ym =CoqΦqm + CovΦq̇m

 (40)

Define the state variable x as follows:

125



          

FREQUENCY, Hz
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xs =
[
x1

x2

]
=

[
qm
q̇m

]
(41)

where qm and q̇m are modal displacements and rates (such that q = Φqm; q is the actual displacement);
then Eq. (40) can be presented as a set of first-order equations:

ẋ1 = x2

ẋ2 = − Ω2x1 − 2ZΩx2 +M−1
m ΦBous

ys = CoqΦx1 + Covφx2


(42)

or in the following form:

ẋs =Asxs +Bsus

ys =Csx

 (43a)
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where

As =
[

0 I
−Ω2 −2ZΩ

]

Bs =
[

0
M−1
m ΦTBo

]

Cs = [CoqΦ CovΦ ]


(43b)

is the sought state–space model in modal coordinates. In our case, us = [Ta Te ], where Ta and Te
are torques at azimuth wheels and elevation pinions, respectively. The structure output consists of the
elevation and azimuth encoder angles and rates, pinion angles, elevation and cross-elevation pointing
errors, and other structural variables of interest. Two outputs, θ̇pa and θ̇pe, the pinion rates in azimuth
and elevation, are of special interest. Thus, the structural state–space equations are as follows:

ẋs = Asxs +BsaTa +BseTe

θ̇pa = Cpaxs

θ̇pe = Cpexs

y = Csx


(44)

The modal data obtained from the finite element model consist of 150 natural frequencies, ωi; modes,
φi; and modal masses, mmi, i = 1, · · · , 150. Additionally, based on the measurements, the modal damping
is assumed to be 1 percent, i.e., ζi = 0.01. Based on this information, the state matrix As, as in Eq. (43b),
is determined by introducing the matrix of natural frequencies, Ω = diag(ωi), and modal damping,
Z = diag(ζi), i = 1, · · · , 150.

The determination of matrices Bs and Cs is presented here for the azimuth wheel torque input and
the azimuth wheel rate output. For the azimuth wheel torque input, consider the azimuth wheel of radius
ra and the azimuth rail of radius Ra. Let nodes n1 be located at the contact point of the wheel and the
rail. The torque applied to the wheel generates the force Fa at node n1. The force is tangential to the
azimuth rail. Assuming a rigid pinion, the force Fa applied to the wheel is

Fa =
Ta
ra

(45)

This force has x and y components, Fax and Fay [see Fig. 13(a)], such that

Fax = − Fa cosαa = −Ta
ra

cosαa

Fay = Fa sinαa =
Ta
ra

sinαa

 (46)
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Fig. 13.  Forces and rates at the azimuth pinion:  (a) forces and (b) rates.

n1

and αa is the angle marked in this figure. Let ex and ey denote the unit vector (all but one component
are zero, and the nonzero component is equal to one), with the unit component at the location of the x
and y displacement of node n1 in the finite element model. The input, F , to the finite element model
is F = Faxex + Fayey. Therefore, Bo follows from the decomposition of F , such that F = BoTa. From
Eq. (46), it follows that

Bo = −ex
ra

cosαa +
ey
ra

sinαa (47)

Next, from Eq. (43b), it follows that the nonzero (lower) part of B, after introduction of Eq. (47), is

M−1
m ΦTBo =−M−1

m

ΦT ex
ra

cosαa +M−1
m

ΦT ey
ra

sinαa (48a)

=−M−1
m

φx
ra

cosαa +M−1
m

φy
ra

sinαa (48b)

where φx and φy are vectors of modal components of x and y displacements at node n1:

φx = ΦT ex = [φx1, φx2, · · · , φx150]T

φy = ΦT ey = [φy1, φy2, · · · , φy150]T

 (49)

where φxi and φyi are x and y displacements of mode i at node n1. Therefore, from Eqs. (43b) and (48b),
one obtains

Bs =

[
0

−M−1
m

φx
ra

cosαa +M−1
m

φy
ra

sinαa

]
(50)

The output matrix derivation is presented here for the wheel rate, θ̇pa. The wheel rotation is
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θ̇pa =
va
ra

(51)

where va is the tangential velocity of the wheel at the contact point [see Fig. 13(b)]. If vx and vy are x
and y components of va, and αa is the angle marked in this figure, then

va = −vx cosαa + vy sinαa (52)

therefore,

θ̇pa =

(
−e

T
x

ra
cosαa +

eTy
ra

sinαa

)
q̇ (53a)

and in modal coordinates

θ̇pa =

(
−ΦeTx

ra
cosαa +

ΦeTy
ra

sinαa

)
q̇m =

(
−φ

T
x

ra
cosαa +

φTy
ra

sinαa

)
q̇m (53b)

Finally, the matrix Cs, according to Eqs. (43b) and (53b), is

Cs =
[

0 −φ
T
x

ra
cosαa +

φTy
ra

sinαa

]
(54)

The structural model consists of m = 150 modes or 300 states. Modes not participating in system
dynamics are eliminated. Observability and controllability properties in the balanced representation are
used to determine insignificant modes. The balanced representation [9] is a state–space representation
with equally controllable and observable states. The Hankel singular value is a measure of the joint
controllability and observability of each balanced state variable. The states with small Hankel singular
values are deleted as weakly excited and weakly observed, causing minimal modeling error.

For flexible structures with small damping and distinct poles, the modal representation is almost
balanced, c.f. [10–12], and each mode is considered for the reduction separately. For a structure with
m modes, matrix Bs has 2m rows, and Cs has 2m columns. Denote bs as the last m rows of Bs, cq as
the first m columns of Cs, and cr as the last m columns of Cs. Then bsi is the ith row of bs, cqi is the
ith column of cq, and cri is the ith column of cr. Denote β2

si = bsib
T
si, αqi = cTqicqi, and αri = cTricri. The

Hankel singular value for the ith mode is given in [11] and [12]:

γ2
i =

wbiβsi
√
w2
qiα

2
qi + w2

riω
2
i α

2
ri

4ζiω2
i

(55)

where the weighting factors wbi > 0, wqi > 0, wri > 0, and i = 1, · · · ,m.

Care should be taken when determining Hankel singular values. Units should be consistent; other-
wise, some inputs or outputs receive more weight in Hankel singular-value determination than necessary.
Consider, for example, the azimuth encoder reading in arcseconds and the elevation encoder reading in
degrees. For the same angle, the numerical reading of the azimuth encoder is 3600 larger than the eleva-
tion encoder reading; hence, the elements for the azimuth output are much larger than those for elevation.

129



       

On the other hand, some variables need more attention than others: Pointing error and encoder readings
are the most important factors in the antenna performance; hence, their importance has to be emphasized
in mode evaluation. For consistency of units and importance of variables, the weighting factors wbi, wqi,
and wri are introduced. Typically, weights are set to 1.

For each mode, the Hankel singular value is determined and used to decide on the number of modes in
the reduced structural model. For the rigid body modes, Hankel singular values tend to infinity; hence,
rigid body modes are always included in the reduced model. Hankel singular values of the 150 modes of
the antenna model are plotted in Fig. 14. The reduced order model consists of 24 modes: 2 rigid-body
modes and 22 flexible modes.

The plots of the transfer function in azimuth and elevation (magnitude and phase) from the wheel
(pinion) torque T to the axis rate θ̇ are shown in Fig. 15. They show that the azimuth transfer function
has low frequency resonances (about 1.2 and 2.2 Hz), which are absent in the elevation transfer function.
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Fig. 14.  Hankel singular values for the antenna structure.
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Fig. 15.  Magnitude of the transfer function of the antenna structure: (a) direct coupling
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IV. Rate Loop Model

A rate loop block diagram is presented in Fig. 16, where Ta and Te denote the drive torques, θ̇pa and
θ̇pe denote pinion rates, and ra and re are rate commands in azimuth and elevation, respectively. The
state–space equations are combined from the state equations of the azimuth and elevation drives [see
Eq. (38) and add subscript “a” for the azimuth drive and subscript “e” for the elevation drive] and the
structure [see Eq. (44)]. Combining them, and defining the rate loop state vector xr as xr = [xda, xde, xs],
where xda and xde are azimuth and elevation drive states, one obtains the rate-loop state–space equations:

ẋr = Arxr +Brara +Brere

y = Crxr

θa = Caxr

θe = Cexr


(56a)

where

Ar =

 Ada 0 BdtaCpa
0 Ade BdteCpe

BsaCda BseCde As



Bra =

Bdra0
0



Bre =

 0
Bdre

0


Cr = [ 0 0 Cs ]



(56b)

where θa and θe are azimuth and elevation encoder readings, Cpa and Cpe are the output matrices for the
azimuth and elevation pinion rates, and Ca and Ce are the output matrices for the azimuth and elevation
encoders, respectively.

Figure 17 shows the magnitude of the transfer function from the azimuth rate input ra to the azimuth
encoder rate θ̇a (solid line) and the magnitude of the transfer function from the elevation rate input re to
the elevation encoder rate θ̇e (dashed line). The figure shows that the required identity relationship for
low frequencies is not acquired. The magnitude of the transfer functions for frequencies less than 0.3 Hz
is 0.74, below the required 1, due to inaccuracy in the model parameters (mainly in the hydraulic part).
This drawback can be removed by the experimental investigation of the parameters of the hydraulic
drives, such as motors, valves, and lines. However, this inaccuracy is corrected by the position feedback
loop, as will be shown later. The high-frequency peaks in azimuth and elevation (8 Hz in azimuth and
20 Hz in elevation) are the gearbox resonances.
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V. Position Loop Model

The rate loop system with the proportional and integral (PI) controller is shown in Fig. 18, where ea
and ee are the azimuth and elevation servo errors. For the series connection of the rate loop system and
the controller, as in Fig. 18(a), define the state vector xTo = [xai xei xTrl ] with the new state variables
xei and xai (integrals of the errors) such that

ẋai = ea

ẋei = ee

 (57)

The system output y is defined in Eq. (56a), the encoder output is θT = [ θa θe ], and the input is
eT = [ ea ee ]. The inputs to the rate loop systems are obtained from Fig. 18(a):

ra = kpaea + kiaxai

re = kpeee + kiexei

 (58)

where kpe, kie, kpa, and kia are proportional and integral parameters of the controllers. Combining the
equations for the rate loop system with Eqs. (57) and (58), one obtains
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θe

θa

ẋo = Aoxo +Boe

θ = Coxo

y = Cxo


(59a)

where

Ao =

 0 0 0
0 0 0

kiaBra kieBre Ar



Bo =

 I 0
0 I

kpaBra kpeBre



Co =
[

0 0 Ca
0 0 Ce

]

C = [ 0 0 Cr ]



(59b)

For the closed-loop system [see Fig. 18(b)],

e = c− θ (60)

where cT = [ca ce] is a command signal in azimuth, ca, and in elevation, ce. Introducing Eq. (60) to
Eq. (59), one obtains

ẋcl = Aclxcl +Boc

y = Cxcl

 (61a)

where
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Acl = Ao −BoCo (61b)

The simulations shown in Figs. 19 through 22 have two sets of assumptions: (1) a proportional gain
of 1 in azimuth and elevation and an integral gain of 0.3 and (2) a proportional gain of 0.7 in azimuth
and elevation and an integral gain of 0.2. The closed-loop transfer functions from azimuth command
to azimuth encoder are shown in Fig. 19(a), and those from elevation command to elevation encoder
are shown in Fig. 19(b). They show a bandwidth of 0.1 Hz. The cross-coupling transfer functions from
azimuth command to elevation encoder and from elevation command to azimuth encoder are shown in
Fig. 20. They show low-level cross-coupling. The closed-loop step responses from azimuth command
to azimuth encoder are shown in Fig. 21(a), and those from elevation command to elevation encoder
are shown in Fig. 21(b). They show a 20- to 30-percent overshoot and a 7- to 9-s settling time. The
cross-coupling from azimuth step command to elevation encoder and from elevation step command to
azimuth encoder is shown in Fig. 22. The cross-coupling is of the order 10−3.
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VI. Wind Disturbance Simulations

Wind gust disturbances were modeled similarly to the DSS-13 antenna (see [13]) using the wind tunnel
pressure distribution on the dish taken from Blaylock.1 Their time history is generated using the wind
Davenport spectrum (see [14] and [15]), determined for the Goldstone site. The simulations for the
50 km/h wind gave the results listed in Table 4 and compared with the simulation results of the DSS-13
antenna. The table shows that DSS 14 has better disturbance rejection properties (at the encoders) than
has the DSS-13 antenna.

Table 4. Servo errors in mdeg (3 σ rms)
for 50 km/h wind gusts.

Drive Front wind Side wind

Elevation, DSS 14 2.6 0.7
Elevation, DSS 13 14.6 1.9
Azimuth, DSS 14 0.1 2.1
Azimuth, DSS 13 0.5 2.3

VII. Conclusions

An analytical model of the DSS-14 antenna has been developed. The rate loop model consists of the
structural model (derived from the finite element model), gearbox model, hydraulic servo, and electronic
boxes. The position loop was closed, and the time and frequency responses were simulated. The wind
pointing errors of the DSS-14 antenna have been simulated. The model allows for detailed simulation of
antenna dynamics and for modifications and improvements to the antenna control system.

The simulations confirmed that the use of encoders located at drives limits the performance of the
antenna (mainly by reducing its bandwidth to 0.1 Hz). The use of the master equatorial or new encoders

1 R. B. Blaylock, “Aerodynamic Coefficients for Model of a Paraboloidal Reflector Directional Antenna Proposed for a
JPL Advanced Antenna System,” JPL Interoffice Memorandum CP-6 (internal document), Jet Propulsion Laboratory,
Pasadena, California, 1964.
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located close to the axes of rotation of the antenna (similarly to the 34-m antennas) would allow expansion
of the bandwidth to 0.7–1.0 Hz.

The antenna model needs further improvement. First, in this model, certain parameters of the hy-
draulic drive are known with rather poor accuracy, and it influences the accuracy of the antenna model.
It is essential to use experimental techniques to get more precise values of the parameters. Secondly, the
RF pointing errors (in elevation and cross-elevation) of the antenna should be determined in order to
evaluate the precision of the antenna pointing.
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Appendix

Transfer Function Derivation

Each component of the electronics board is composed of operational amplifiers (opamps), resistors,
and capacitors. The basic configuration of an inverting opamp circuit is shown in Fig. A-1. The “+”
terminal of the opamp is grounded; thus, the “−” terminal voltage is zero, called a virtual ground. In
this situation, the currents i1 and i2 flowing through impedances Z1 and Z2 are equal to

i1 =
vin
Z1

i2 =
vout
Z2

 (A-1)

and their sum is zero; that is, i1 = −i2. Introducing them to Eq. (A-1) gives

vout = −kvin (A-2a)

where

k =
Z2

Z1
(A-2b)
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–

+
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Fig. A-1.  Opamp circuit.

I. Transfer Function Gto
A schematic for the transfer function Gto is shown in Fig. A-2(a), where the notation and the value

of each element were taken from JPL Drawing 9479871D.2 This schematic can be simplified to the one
shown in Fig. A-2(b). In this figure,

Rs =
(
R−1

56 +R−1
57 +R−1

58 +R−1
59

)−1
+R62 = 49.5 kΩ (A-3a)

where R56 = R57 = R58 = R59 = 100 kΩ, and R62 = 24.5 kΩ; thus, Rs = 49.5 kΩ. The component Z1 is

Z1 = R63 +
R64

1 +R64C40s
∼= R63 +R64 = 91.1 kΩ (A-3b)

where R63 = 40 kΩ, R64 = 51.1 kΩ, and C40 = 0.15 µF. The time constant R64C40 = 0.0077 s is small,
thus neglected. Denote Rmta = 9.7 kΩ and Rmte = 7.8 kΩ the motor resistances in azimuth and elevation,
respectively, and C41 = 0.15 µF. Then, the component Z2 for the azimuth drive is as follows:

Z2 =
Rmta

1 +RmtaC41s
∼= Rmta = 9.7 kΩ (A-4a)

and for the elevation drive,

Z2 =
Rmte

1 +RmteC41s
∼= Rmte = 7.8 kΩ (A-4b)

The time constants RmtaC41 = 0.0015 s and RmteC41 = 0.0012 s are of the order 10−3 s, thus considered
small, and neglected.

The transfer function Gto for azimuth is

Gto =
Rp

Rs +Rp
=

8800
49, 500 + 8800

= 0.151 (A-5a)

and for elevation, it is

2 JPL Drawing 9479871D (internal document), Jet Propulsion Laboratory, Pasadena, California.
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Gto =
Rp

Rs +Rp
=

7200
49, 500 + 7200

= 0.127 (A-5b)

where Rp =
(
Z−1

1 + Z−1
2

)−1
= 8.8 kΩ in azimuth and 7.2 kΩ in elevation, while Rs = 49.5 kΩ.

Vt Vto

(b)

Rs° •

Z1

•

Z2

°
R57

R58

R59

Vt

R56

R62

R63

R64 C40
C41 Rmt

Vto

(a)

• •° •

•

• • °

Fig. A-2.  Schematic for the transfer function Gto:  (a) full and (b) simplified.

II. Transfer Functions Gr1 and Gr2
The transfer functions Gr1 and Gr2 are determined simultaneously. Their schematic is given in

Fig. A-3(a), the parameters parameters of which are

R15 = 750 kΩ

R50 = 100 kΩ

R51 = 12.1 kΩ

R52 = 442 kΩ

R53 = 442 kΩ

R65 = 909 kΩ

R66 = 90.9 kΩ

C31 = 1 µF

C42 = 0.1 µF



(A-6)

The schematic from Fig. A-3(a) can be transformed to the form shown in Fig. A-3(b). The value of Z3

is as follows:

Z3 = R66 +
R65

1 +R65C42s
∼= R66 +R65 = 106 kΩ (A-7)

140



              

In this variable, the small time constant R65C42 = 0.0909 s was ignored.

The value Z4 is obtained as

Z4 = R53 +
Ro

1 +RoC31s
= 4.65× 106 1 + 0.400s

1 + 4.205s
(A-8)

where Ro = (R50 +R52 +R50R52)/R51 = 4205 kΩ.

Having determined Z3 and Z4, the transfer functions Gr1 (from vr to vs) and Gr2 (from vto to vs) are
obtained:

Gr1 =
Z4

R15
= 6.20 Go

Gr2 =− Z4

Z3
= −4.65 Go

 (A-9)

where

Go =
1 + 0.400s
1 + 4.205s

(A-10)

is the transfer function of a lag compensator.
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°
–

+

•
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°

•

• • •

•

(a)

R65

R52 R50

R66
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–

+
°
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Z3

• •

•
Z4

Vs

Fig. A-3.  Schematic for the transfer functions Gr1 and Gr2:  (a) full and (b) simplified.

III. Transfer Function Gs
The transfer function Gs is determined from the schematic in Fig. A-4(a), and is shown in compact

form in Fig. A-4(b). For this schematic, R13 = 100 kΩ, R36 = 10 kΩ, R43 = 24.9 kΩ, and C18 = 0.1 µF;
therefore, one obtains

Z5 =
R36

1 +R36C18s
∼= R36 = 10 kΩ (A-11)

where R36C18 = 0.0015 s ∼= 0. Since v1 = vsZ5/R43, and is = v1(Z−1
5 +R−1), thus,
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Gs =
is
vs

=
R13 + Z5

R13R43
= 4.42× 10−5 (A-12)

(a)

–

+
°
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•
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–

+
°
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•
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V1 is

Fig. A-4.  Schematic for the transfer function Gs:  (a) full and (b) simplified.
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